

Hawaiian Monk Seal Research Program: Data Streams Informing Monk Seal Research & Recovery

NOAA Fisheries Science Program Reviews 2015 Protected Species Science

Stacie J. Robinson

Program Goals	Data Streams	Data Management —	Recovery Action	
Monitor Population Trends	NWHI Pop. Assess. MHI Sightings Ni'ihau Surveys	Population Assessment Database	Recovery Planning Critical Habitat Sec 7 / BiOp	
Understand Health Threats and Enhance Survival	Health Screening / Necropsy Emergency Response/ Captive Care	Specimen Database	Stranding Response Rescue/Rehab	
Understand Ecology, Behavior, and Requirements	Telemetry Crittercam /Video Diet Analyses	Vaccination/Outbreak Response Translocation Male Aggression		
Understand Ecological Relationships and Ecosystem-Scale Processes	Ecological / Community Data Physical/Biological Oceanography Genetics Other Collaborations	Basic data storage	Shark Predation Mitigation Fishery Interactions / Competition Human Interactions / Behavior Mod. Outreach	

- We consistently monitor seal populations to assess vital rates and population trends.
- Study design varies geographically:
 - Decades of concentrated data from NWHI camps
 - Continuous reports from volunteers across MHI

NWHI Population Assessment

- Remote camps deployed
 - 5 NWHI seasonal camps
 - Short surveys at other sites
- Biologists conduct surveys
 - Tag animals & re-sight
 - Observe behavior & ecology
 - Perform survival enhancing interventions & monitor health
- Long term monitoring data informs population estimation and calculation of vital rates

MHI Sightings Network

- Volunteer networks
- Public sighting reports
- Reports coded and transcribed into database
- Sighting data yields minimum occurrence counts

Niihau Surveys

- An important population center within the MHI
- Privately owned
- Surveyed with cooperation from Niihau Ranch and US NAVY
- Few survey days / year
- Abbreviated surveys yield beach counts as index of population

Seal Identification

Linear Control of Cont

- Sighting and identifying seals forms the backbone of population data
- Natural bleaches
 - Photo ID database is important
 - Variable through life
- Temporary Bleaches
 - Seasonal
- Flipper tags
 - Most permanent

Population Data
Estimates & Trends

Northwest Hawaiian Islands

- Population estimated by mark-recapture models
- Trends vary across sites

Baker et al. 2011 Hawaiian Monk Seal Research Program 2014a

Population Data Estimates & Trends

Necker & Nihoa Islands

- Population estimated by beach count indexes
- Trends appear to be stabilizing in recent years

Population Data Estimates & Trends

Main Hawaiian Islands

- Population estimated by minimum counts of identified individuals
- Trend appears positive in recent years

Population Data Vital Rates

- Life tables are constructed from field observation data
- Stochastic simulation model is used to estimate population parameters and vital rates:
 - Population age/sex structure

Harting 2002
Harting et al. 2007
Baker and Thompson 2007
National Marine Fisheries Service 2015

Population Data Vital Rates

- Life tables are constructed from field observation data
- Stochastic simulation model is used to estimate population parameters and vital rates:

Reproductive rates

Total Pups Born (6 main NW HI subpopulations)

Harting 2002
Harting et al. 2007
Baker and Thompson 2007
National Marine Fisheries Service 2015

Population Data
Estimates & Trends

- Life tables are constructed from field observation data
- Stochastic simulation model is used to estimate population parameters and vital rates:
 - Population age/sex structure
 - Reproductive rates
 - Survival rates

Harting 2002
Harting et al. 2007
Baker and Thompson 2007
National Marine Fisheries Service 2015

Population Data
Estimates & Trends

- Life tables are constructed from field observation data
- Stochastic simulation model is used to estimate population parameters and vital rates:
 - Population age/sex structure
 - Reproductive rates
 - Survival rates
 - Population growth rates

Intrinsic growth rate (λ) for HMS subpopulations

Harting 2002
Harting et al. 2007
Baker and Thompson 2007
National Marine Fisheries Service 2015

FFS	LAY	LIS	PHR	MDY	KUR	MHI
0.950	1.000	0.973	0.973	0.978	0.913	1.033; 1.051

Successes & Challenges

NWHI

- Long running dataset
- Complete tracking of cohorts in sufficient field seasons
- Protocol adapted and data quality up-kept to maintain consistency over decades

MHI

 Data allows us to track localized recovery

NWHI

- Data tied to time in field
- Gaps in data = uncertainty in estimates

MHI

- Data limited by volunteer coverage
- Data biased by accessibility

Successes & Challenges

Understand Ecological Relationships and Ecosystem-Scale Processes

Ecosystem Science

Physical/Biological Oceanography

Genetics

Other Collaborations

Reproduction / **Fitness**

We use intervention, emergency response, and health monitoring data to understand health threats and evaluate actions to improve both individual survival and population health.

Necropsy

- Necropsy samples
 - 2013: MHI 4, NWHI 6
 - 2014: MHI 12, NWHI 3
 - Gross pathology
 - Histopathology
 - Pathogen/disease screening
- Growing knowledge of mortality threats
 - Human interactions
 (hookings / trauma)
 - Diseases detection
 (toxoplasmosis, leptospirosis)

Health Monitoring

- Epidemiological sampling
 - Often opportunistic when animals are handled
 - ~40,000 samples ~ 80,000 aliquots
- Directed sampling / use of archived samples
 - NIST studies on contaminants and pathogens
 - Contaminant testing Lopez et al. 2012 and 2014
 - Ciguatoxin screening Ramsdell et al. ongoing
- Understand presence and prevalence

Aguirre et al. 2007; Goldstein et al. 2006; Honnold et al. 2005; Littnan et al. 2006; Reif et al. 2004 and 2006

Data helps evaluate health interventions
 Gobush et al. 2011 and 2014

Emergency Response

- Respond to emergencies as they occur
 - 2014 11 seals required treatment in MHI

- Response = intervention + data
 - Prevalence of survival threats
 - Individual seal risk factors (age/sex)
 - Local risk factors (human use/habitat conditions)
 - Opportunities to sample

Rehabilitation

- NOAA IRC Honolulu
 - Short term post-intervention care
- TMMC Ke Kai Ola Monk Seal Hospital Kona
 - Longer term rehabilitative & supportive care

- Captive care allows monitoring
- Captive animals provide data
 - Behavioral observation
 - Sampling in controlled environment
 - Opportunities for serial sampling

Successes & Challenges

- Protocols developed for safe capture, handling, veterinary care for sick/injured seals
- Collaborations with several labs with disease expertise
- New monk seal hospital opens potential to rehabilitate seals and learn about animal needs
- Data tracking of response activities demonstrates population-level impacts

- Ability to collect samples before degradation
- Ability to store/deliver quality samples from remote areas
- Test availability, accuracy, cost
- Improved reporting is essential for data and interventions

Data Streams

Questions

Monitor Population Trends

Understand Health
Threats and Enhance
Survival

Understand Ecology, Behavior, and Requirements

Understand Ecological
Relationships and
Ecosystem-Scale
Processes

Population Assessment

Health Monitoring

Ecology & Nutrition

Ecosystem Science

Ecological /
Community Data
Physical/Biological
Oceanography

Genetics

Other Collaborations

Abundance / Trends

Vital Rates

Population Structure

Health/Survival Threats

Nutritional Needs

Habitat Use

Competition/
Coexistence

Climate Impacts

Reproduction / Fitness

- We use of range of technologies to collect data to understand seal ecology, behavior, and resource needs.
- Studies have strategically involved animals of varied age/sex classes and locations.

Instrumentation

Tracking survival and impacts of translocation

ALEXANDER OF

25 Translocated animals
10 Rehabilitated & released animals

Descriptive studies of foraging and movement ecology

24 Satellite tags at FFS (adult M+F)
Parrish and Abernathy 2006
147 Satellite tags throughout NWHI (all age/sex)
Stewart et al. 2006

Movement and foraging ecology related to habitat data

15 Satellite tags at Lisianski (juveniles)29 Satellite tags at Nihoa (Translocations + Controls)Norris 2013

Complex foraging behavior and interaction data

50 Satellite tags
40 Cell phone tags throughout MHI
subsets with CritterCams & accelerometers
60 CritterCams

Littnan et al. 2004; Moll et al. 2007; Parrish et al. 2005; Wilson et al. 2015 and ongoing

Telemetry

- Tracking animals to monitor survival and understand impacts of interventions
- Estimating space use to evaluate development of foraging behavior
- Using depth
 profiles to
 understand dive
 patterns and
 foraging behavior

CritterCam / Video

- We document prey encountered, feeding rates, prey selection, and foraging methods
- We detect
 interactions with
 competing
 predators to inform
 ecological studies
- Videos provide an engaging outreach tool to help dispel myths about monk seal ecology

Instrumentation

- Integration of data types across instruments gives a complex view of animal behavior and ecology
 - Link sensor readings to behaviors
 - Foraging behavior
 - Foraging areas/depths
 - Travel/movement pattern

Diet Analysis

- Fecal/regurgitate prey remains ID
 - 120 samples
 - Weanling to adult
- Frequency of Occurrence describes diet
- Species Overlap identifies distinctions between NWHI and MHI diets

Diet Analysis

- Fatty acid analysis
- 100 prey species
 distinguished by fatty acid
 composition
- Captive studies
 demonstrate relationship
 of fatty acid signatures and
 monk seal diet

Successes & Challenges

- Telemetry indicates foraging areas and tracks population connectivity.
- CritterCam shows foraging behavior and prey choice.
- Foraging information combats
 misperceptions and gains public
 interest and support.

- Sample sizes low
 - Cost
 - Logistics of capture/handling
- Bias
 - Males avoid stressing females
 - Adults limit weight on small animals

Ecological Communities

- Ecopath food web model used to discern trophic relationships
- Ecosim model used to simulate future ecosystem scenarios
- Models indicate importance of bottom fish for monk seal carrying capacity
- Models show importance of climate factors as drivers of food web dynamics

Oceanography & Climate

- Diverse long-term datasets combined to evaluate system drivers:
 - Monk seal populations
 - Monk seal survival rates
 - Pacific Decadal Oscillation
 - Transition Zone Chlorophyll Front
- Climate factors associated with monk seal population trends
- Ocean productivity related to juvenile survival

Genetics

- 2500+ samples microsatellite genotyped
 - 80 MHC sequencing
 - 50 mtDNA sequencing
- Measures of heterozygosity demonstrate low genetic diversity
- Assignment tests show high connectivity among sites
- Twinning events detected
- Future projects:
 - Parentage assignment analysis
 - Develop new genomic markers

Aldridge et al. 2006 Schultz 2011 Schultz et al. 2009 and 2010 and 2011a/b

Successes & Challenges

- Incorporation of diverse datasets and collaborators to explore complex processes.
- Improved understanding of
 - Ecological relationships
 - Ecosystem drivers
 - Potential climate impacts
 - Micro-evolutionary processes

- Incorporation of diverse
 datasets requires specialized
 knowledge and analysis beyond
 HMSRP capacity.
- Knowledge of ecological relationships and drivers still leaves the challenge of mitigating complex threats.

Up & Coming

Social science

- Taking advantage of social media to track monk seal sightings and human interactions with seals
- Interview-based pilot study provides guidance on gathering seal-fisheries interaction data

New technology

- Un-manned areal systems help to survey in-accessible areas
- Remote cameras provide year-round data where camps aren't possible

